Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Chinese Journal of Hepatology ; (12): 362-366, 2022.
Article in Chinese | WPRIM | ID: wpr-935955

ABSTRACT

The liver is abundant in blood supply and receives 25% of the cardiac output via the hepatic artery and portal vein. Circulatory disorders may cause hepatic injury, resulting in congestive hepatopathy(CH) and ischemic hepatitis(IH). Hepatic congestion arising from increased hepatic venous pressure and decreased cardiac output is the common pathophysiological basis of both CH and IH. In addition, extensive arteriovenous shunts affect portal pressure and cardiac function, leading to alterations of hepatic blood supply. The current review summarizes the pathophysiology, clinical manifestations and therapeutic interventions of the above diseases, in order to provide reference for clinical practice.


Subject(s)
Humans , Cardiovascular Diseases , Hepatic Artery , Liver , Liver Diseases , Portal Pressure , Portal Vein
2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 247-255, 2022.
Article in Chinese | WPRIM | ID: wpr-940716

ABSTRACT

Traditional Chinese medicine (TCM), which owns abundant chemical components and complex action pathways, has been widely recognized in the prevention and treatment of diseases. Some analysis methods have been emerged in order to ensure the quality of TCM and to develop new TCM drugs. Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) is a soft ionization mass spectrometric technique with the advantages of high throughput, high sensitivity, low cost and so on. It provides technical support for the molecular level study on TCM. At present, this technique has been used in the field of composition analysis and metabonomics research of TCM, and plays an important role in the identification of Chinese herbal medicines, real-time molecular screening and the construction of metabolic network pathway of active ingredients. Among them, the selection of appropriate matrix and sample preparation technology is the key to ensure the detection effect of MALDI-MS. With the development and optimization of new matrix, the continuous improvement of sample preparation technology and the combination of MALDI-MS with various analytical methods will greatly improve the detection effect. Based on this, this paper discusses the application of MALDI-MS in TCM, including high-throughput detection of active ingredients in TCM, monitoring of the original medicines and their metabolites in vivo, and in situ visualization and characterization of tissue distribution information of active ingredients in TCM. It also discusses the application prospect and existing problems of MALDI-MS in TCM, so as to provide technical support for the identification of active ingredients in TCM, drug utilization and metabolism.

3.
China Journal of Chinese Materia Medica ; (24): 1222-1229, 2022.
Article in Chinese | WPRIM | ID: wpr-928046

ABSTRACT

In this study, a method was established for in-situ visualization of metabolite distribution in the rhizome of Paris polyphylla var. yunnanensis. To be specific, through matrix-assisted laser desorption/ionization-mass spectrometry imaging(MALDI-MSI), the spatial locations of steroidal saponins, amino acids, organic acids, phytosterols, phytoecdysones, nucleosides, and esters in rhizome of the medicinal plant were directly analyzed, and six unknown compounds with differential distribution in rhizome tissues were identified. The specific procedure is as follows: preparation of rhizome tissue section, matrix screening and optimization, and MALDI-MSI analysis. The results showed that the steroidal saponins were mainly distributed in the central, amino acids in epidermis and cortex, low-molecular-weight organic acids in central epidermis, phytosterols in the epidermis and lateral cortex, the phytoecdysones in epidermis and cortex, nucleosides(uneven distribution) in epidermis and cortex, growth hormones around the epidermis and cortex, particularly outside the cortex, and esters in cortex with unobvious difference among different tissues. In this study, the spatial distribution of meta-bolites in the rhizome of P. polyphylla var. yunnanensis was characterized for the first time. The result can serve as a reference for identifying and extracting endogenous metabolites of P. polyphylla var. yunnanensis, exploring the synthesis and metabolism mechanisms of the metabolites, and evaluating the quality of medicinal materials.


Subject(s)
Liliaceae/chemistry , Melanthiaceae , Rhizome/chemistry , Saponins/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
4.
Chinese Medical Journal ; (24): 1415-1421, 2020.
Article in English | WPRIM | ID: wpr-827573

ABSTRACT

BACKGROUND@#Cerebrospinal fluid (CSF) has been demonstrated as a better source of circulating tumor DNA (ctDNA) than plasma for brain tumors. However, it is unclear whether whole exome sequencing (WES) is qualified for detection of ctDNA in CSF. The aim of this study was to determine if assessment of ctDNA in CSF by WES is a feasible approach to detect genomic alterations of glioblastoma.@*METHODS@#CSFs of ten glioblastoma patients were collected pre-operatively at the Department of Neurosurgery, Sun Yat-sen University Cancer Center. ctDNA in CSF and genome DNA in the resected tumor were extracted and subjected to WES. The identified glioblastoma-associated mutations from ctDNA in CSF and genome DNA in the resected tumor were compared.@*RESULTS@#Due to the ctDNA in CSF was unqualified for exome sequencing for one patient, nine patients were included into the final analysis. More glioblastoma-associated mutations tended to be detected in CSF compared with the corresponding tumor tissue samples (3.56 ± 0.75 vs. 2.22 ± 0.32, P = 0.097), while the statistical significance was limited by the small sample size. The average mutation frequencies were similar in CSF and tumor tissue samples (74.1% ± 6.0% vs. 73.8% ± 6.0%, P = 0.924). The R132H mutation of isocitrate dehydrogenase 1 and the G34V mutation of H3 histone, family 3A (H3F3A) which had been reported in the pathological diagnoses were also detected from ctDNA in CSF by WES. Patients who received temozolomide chemotherapy previously or those whose tumor involved subventricular zone tended to harbor more mutations in their CSF.@*CONCLUSION@#Assessment of ctDNA in CSF by WES is a feasible approach to detect genomic alterations of glioblastoma, which may provide useful information for the decision of treatment strategy.

SELECTION OF CITATIONS
SEARCH DETAIL